Definite Integrals as limits of sums:

Question 1

$$\lim_{n \to \infty} n^{-\frac{1}{2} \left(1 + \frac{1}{n} \right)} \cdot \left(1^1 \cdot 2^2 \cdot 3^3 \dots n^n \right)^{\frac{1}{n^2}} \text{ equals}$$

(A)
$$\sqrt{e}$$
 (B) $\frac{1}{\sqrt{e}}$ (C) $\frac{1}{\sqrt[4]{e}}$ (D) $\sqrt[4]{e}$

Solution:

Let L =
$$\lim_{n \to \infty} n^{-\frac{1}{2}\left(1 + \frac{1}{n}\right)} \cdot \left(1^1 \cdot 2^2 \cdot 3^3 \dots n^n\right)^{\frac{1}{n^2}}$$

$$ln L = \lim_{n \to \infty} -\frac{1}{2} \left(\frac{n+1}{n} \right) ln n + \frac{1}{n^2} \sum_{k=1}^{n} k \ln k$$

$$= \lim_{n \to \infty} -\frac{1}{2} \left(\frac{n+1}{n} \right) ln n + \frac{1}{n^2} \sum_{k=1}^{n} \left(k ln k - k ln n + k ln n \right)$$

$$= \lim_{n \to \infty} -\frac{1}{2} \left(\frac{n+1}{n} \right) lnn + \frac{1}{n^2} \sum_{k=1}^n k ln \frac{k}{n} + \frac{lnn}{n^2} \sum_{k=1}^n k$$

$$= \lim_{n \to \infty} -\frac{1}{2} \left(\frac{n+1}{n} \right) ln n + \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} ln \frac{k}{n} + \frac{ln n}{n^2} \cdot \frac{n(n+1)}{2}$$

$$= -\frac{1}{2} \left(\frac{n+1}{n} \right) ln n + \int_{0}^{1} x \ln x \, dx + \frac{1}{2} \left(\frac{n+1}{n} \right) ln n$$

$$= \int_{0}^{1} \underbrace{x}_{\Pi} \underbrace{ln \, x}_{1} \, dx = -\frac{1}{4}; \qquad \therefore \quad L = e^{-\frac{1}{4}}$$

Question 2:

$$\lim_{n \to \infty} {\binom{2n}{n}} C_n^{1/n}.$$
(A) 4 (B) 4/e (C) 4/e^2 (D) $\frac{4}{e} + 1$

Solution:

$$\begin{aligned} \text{Let } P &= \lim_{n \to \infty} \left(\frac{(2n)!}{n!n!} \right)^{1/n} \qquad ; \qquad P = \lim_{n \to \infty} \left[\frac{n!(n+1)(n+2)....(n+n)}{n!n!} \right]^{1/n}; \\ P &= \lim_{n \to \infty} \left(\frac{n+1}{1} \cdot \frac{n+2}{2} \dots \frac{n+n}{n} \right)^{1/n} \qquad \qquad ln \ P = \lim_{n \to \infty} \frac{1}{n} \left(ln \frac{n+1}{1} + ln \frac{n+2}{2} + \dots + ln \frac{n+n}{n} \right); \\ \therefore \ T_r &= \frac{1}{n} \left(ln \frac{n+r}{r} \right) \\ S_n &= \frac{1}{n} \sum_{r=1}^n \ln \left(1 + \frac{1}{r/n} \right) \\ ln \ P &= \int_0^1 ln \left(1 + \frac{1}{r} \right) dx = \int_0^1 (ln(1+x) - ln x) dx \\ &= (1+x) ln \ (1+x) - (1+x) - [x \ ln \ x - x] \\ &= [(1+x) ln(1+x) - 1 - x \ ln \ x]_0^1 = (2 \ ln \ 2 - 1 - 0) - (0 - 1) \\ ln \ P &= ln \ 4 \Rightarrow \ \underline{P = 4} \end{aligned}$$

Question 3:

Evaluate

$$\lim_{n\to\infty}\frac{\left[(n+1)(n+2)\ldots(n+n)\right]^{1/n}}{n}$$

Solution:

Let L represent the given limit. We have,

$$\ln L = \frac{1}{n} \ln \left\{ \left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \dots \left(1 + \frac{n}{n} \right) \right\}$$
$$= \frac{1}{n} \sum_{r=1}^{n} \ln \left(1 + \frac{r}{n} \right)$$

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{r=1}^{n} hf(a+rh)$$
(1)

Since,

$$where \quad h=rac{b-a}{n}$$

$$\ln L = \int_{0}^{1} \ln(1+x) dx$$

= $x \ln(1+x) |_{0}^{1} - \int_{0}^{1} \frac{x}{1+x} dx$
= $\ln 2 - \int_{0}^{1} \left(\frac{x+1-1}{x+1}\right) dx$
= $\ln 2 - 1 + \ln 2$
= $2 \ln 2 - 1$
= $\ln(4/e)$
 $\Rightarrow L = \frac{4}{e}$

Question 4:

Find the sum of the series

$$\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{3n} \text{as } n \to \infty$$

Solution: The given series can be written concisely as

$$\begin{split} S &= \sum_{r=0}^{2n} \frac{1}{n+r} \\ &= \frac{1}{n} \sum_{r=0}^{2n} \frac{1}{1+(r/n)} \end{split}$$

Comparing this with the right hand side of (1), we see that S can be expressed as the integral of a function $f(x) = \frac{1}{1+x}$ from 0 to 2, because since r varies till 2n, r/n varies till 2. Thus,

$$S = \int_{0}^{2} \frac{1}{1+x} dx$$
$$= \ln 3$$

Question 5:

Find the sum of the series

$$rac{n}{n^2+1^2}+rac{1}{n^2+2^2}+\ldots\ldots+rac{1}{n^2+n^2} ext{ as } n o \infty$$

Solution:

Concisely put,

$$\begin{split} S &= \sum_{l=1}^{n} \frac{n}{n^2 + r^2} \\ &= \frac{1}{n} \sum_{r=1}^{n} \frac{1}{1 + (r/n)^2} \end{split}$$

As discussed earlier, $\ensuremath{\mathcal{S}}$ can be written in integral form as

$$S = \int_{0}^{1} rac{1}{1+x^2} dx$$
 $= an^{-1}x ig|_{0}^{1}$
 $= rac{\pi}{4}$